
Durablow SH3002-RH
John Fitzgerald

Introduction

● John Fitzgerald, Massachusetts
● Hardware hacker
● Software hacker
● Reverse engineer
● Circuit designer
● Sails boats, builds mini boats, and

fixes old motors, among many other
hobbies

https://johnfitz.me/

https://johnfitz.me/

SH3002-RH basic design

● Simple device designed to toggle a fireplace blower fan
● It uses a relay to accomplish this task
● Communicates over WiFi/BLE and a remote
● Use your phone with the application to heat your home

○ WAN or LAN

Device setup

● Download Smart Life App
○ Register account and sign up
○ App is pretty basic, reverse engineering the android app yielded some interesting information

● Three ways to add the device
○ The device wants to connect to WiFi/cloud, so you need to give it credentials to your AP
○ Auto scan mode - uses Bluetooth? to detect device from app then gives it credentials
○ Manual AP - connect to the AP setup by the tuya module and send it credentials that way
○ Add manually Bluetooth - find the bluetooth device and then give it credentials to your AP

Board overview and layout

Research on WiFi/Bluetooth

I first sniffed packets by ARP poisoning the device. A few things were discovered...

● LAN packets for on/off have same encrypted data body, but different header and
some form of a hash

● TLS communicate with the tuya backend is made with a pre-shared key (weak)

As for Bluetooth, I did not look much into this. I quickly replayed some things over
Ubertooth but no luck. Did not look further as I wanted to do other things.

I looked at the Android App for a bit and discovered some secret values used for
generating an HMAC key used in signatures of some data packets? (the LAN packets?
cloud backend?)

What about the remote?

I theorize the security for the remote
control is sub-optimal. I did not end up
taking my LimeSDR to it, but it would be
an interesting demonstration. If it does
implement some rolling code or other
basic checksum/crypto, it may be fun to
try to crack.

The plan

I can probably do something over WiFi/Bluetooth/RF, but I wanted to demonstrate
some some hardware vectors. It seemed the App over LAN sent packets to the
device with a poor HMAC based replay protection/auth mechanism. The key for
data encryption was not rolling either and so the packet body at least could be
replayed. But I did not look into this much more...

After I undermine the hardware "security" and dump the firmware, I can find bugs
or look into software side of things more later (i.e. …. App for iOS/Android or the
firmware for the Tuya app, or other MCU firmwares).

Tuya module

Tuya module

Tuya module

Overview of the chip, notice the external inductor for the switching supply. This will generate the
~1.15V core voltage. There is a low amount of DC coupling required for this chip. Notice also
the RF matching region, clock region, some external transistor, and various passives.

Sniffing interesting pins

Lets go right to sniffing this Tuya module. The ISP header was interesting but let's compromise this first.

UART log and debug mode...
== Rtl8710c IoT Platform ==
Chip VID: 5, Ver: 1
ROM Version: v2.1

== Boot Loader ==
Dec 5 2019:14:02:18

fwx SELE[ffffffff]
fw SELE Bitidx 0, fw1 valid 1, sn 100, fw2 valid 1, sn 101
fw1 USE, return sn 100

Boot Loader <==
== RAM Start ==

Build @ 12:51:08, Jul 29 2020
 Create Task init, stack 0x1000fb28, len 5120
 Create Task app_init, stack 0x10010f88, len 8192
 Create Task IDLE, stack 0x10012fe8, len 768
 Create Task Tmr Svc, stack 0x10013640, len 2048
 Create Task TCP_IP, stack 0x10013fb8, len 4000
[..........]
[01-01 18:12:15 TUYA Debug][tuya_device.c:19] < TUYA IOT SDK V:1.0.12 BS:40.00_PT:2.2_LAN:3.3_CAD:1.0.2_CD:1.0.0 >
< BUILD AT:2020_07_28_19_56_28 BY embed FOR ty_iot_wf_bt_sdk_rtos AT rtl8720cf_ameba >
IOT DEFS < WIFI_GW:1 DEBUG:1 KV_FILE:0 SHUTDOWN_MODE:0 LITTLE_END:1 TLS_MODE:2 ENABLE_LOCAL_LINKAGE:0 ENABLE_CLOUD_OPERATION:0
ENABLE_SUBDEVICE:0 ENABLE_ENGINEER_TO_NORMAL:0 OPERATING_SYSTEM:2 ENABLE_SYS_RPC:0 TY_SECURITY_CHIP:0
RELIABLE_TRANSFER:RELIABLE_TRANSFER ENABLE_LAN_ENCRYPTION:1 ENABLE_LAN_LINKAGE:0 ENABLE_LAN_LINKAGE_MASTER:0 >
[..........]
[01-01 18:12:15 TUYA Debug][tuya_device.c:20] rtl8720cf_common_user_config_ty:2.1.6
[..........]
[01-01 18:12:15 TUYA Notice][simple_flash.c:498] get key:
0x30 0xc6 0x16 0x10 0xb2 0x43 0xb 0xf1 0x73 0xf1 0x3 0x3b 0x71 0x3 0x51 0x67

The other UART

This communicates with 5V
MCU using transistors as level
shifters and a few resistors. If
the WBR1 module was in
circuit, the other MCU would
talk to it over UART. If it is out
of circuit, it would wait for
UART communication trying
different bit rates.

The format is all on Tuya's
website for developers. We
could add a hardware implant
here.

[01-01 18:12:15 TUYA Notice][tuya_uart_common_api.c:118] ty_uart_common_main_com
ponents_version:1.0.5,memrory left:67400...
[01-01 18:12:15 TUYA Notice][tuya_uart_adapt.c:421] ty_uart_public_auto_adapt_co
mponent_version:1.0.1

 Create Task uart_adapt_task, stack 0x1002e850, len 2048
[01-01 18:12:15 TUYA Notice][tuya_uart_adapt.c:358] try:9600/3/1/0
[01-01 18:12:15 TUYA Notice][tuya_uart.c:134] 1 9600
[01-01 18:12:18 TUYA Notice][tuya_uart_adapt.c:358] try:9600/3/1/0
[01-01 18:12:18 TUYA Notice][tuya_uart.c:134] 1 9600
[01-01 18:12:22 TUYA Notice][tuya_uart_adapt.c:358] try:9600/3/1/0
[01-01 18:12:22 TUYA Notice][tuya_uart.c:134] 1 9600
[01-01 18:12:25 TUYA Notice][tuya_uart_adapt.c:358] try:115200/3/1/0

[..........]

Durablow State On
- Tuya: 55 AA 00 00 00 00 FF
- MCU: 55 AA 03 00 00 01 04 07
[...]
[MCU sends more packets]

Durablow State Off
- Tuya: 55 AA 00 00 00 00 FF
- MCU: 55 AA 03 00 00 01 06 09
[stops sending packets]

Datasheet finding… debug mode? SWD/JTAG?

Trying to get into SWD/JTAG

I own a real JLink :P and an XDS110, but also FT2232H, bus pirate, etc

There shouldn't be an issue if there is SWD/JTAG/cJTAG, but I was unable to get
this working. I think there is an eFuse that controls access overriding the strap
pin? Maybe I can glitch into it? I would have came back to this if not for other
attacks.

Side channel profile on reset

NRST/enable net had a lot of capacitance (rise time long, it has internal pull up), telling me they might have had problems
with noise on reset line causing misbehavior. This could be solved by adding capacitance externally or some sort of schmitt
trigger input inside the chip (or clean relay delay generator circuit). The circuit may be susceptible to reset glitches.

You can see the chip has variation in the
electromagnetic signature over time. It could be
that during the period where the main processor
core is off, it is computing some cryptographic
hash or decrypting something with the hardware
engine and the main processor is waiting to be
interrupted. There is some variation in currents
flowing during the flat region still though.

Then the second block of code running
continuously is after that (flash?). If we were
targeting to glitch some code in the ROM it
would be in the beginning of either of these
blocks. These gives us some idea of timing
operations.

Side channel profile largest component

Related to clock?

Variation in features
is pronounced.
Good for SPA.

A hypothesis has a chance of being true...

Are there 8 possible test
modes? What do they have in
this ROM... I wonder? Notice the
devs didn't even change the part
number from RTL8710 to
RTL8720. There are typos in
strings all over the
ROM/firmware. Both from
Realtek and Tuya.

== Rtl8710c IoT Platform ==
Chip VID: 5, Ver: 1
ROM Version: v2.1
Test Mode: boot_cfg1=0x20
Test Mode GPIOA[14, 3, 2] = 0x4

Playing with on strapping pins

I started searching… and messing with the power pin, GND and 3.3V wire, pulling
some pins high and messing with ones I had attached to the JTAG pins after I tried
SWD. I eventually figured out what was the internal pin numbers referred to by the
ROM UART messages.

ROM debug menu!
== Rtl8710c IoT Platform ==
Chip VID: 5, Ver: 1
ROM Version: v2.1
Test Mode: boot_cfg1=0x20
Test Mode GPIOA[14, 3, 2] = 0x6

$8710c>
$8710c>
$8710c>?
DB
 DB <Address, Hex> <Len, Dec>:
 Dump memory byte or Read Hw byte register

DHW
 DHW <Address, Hex> <Len, Dec>:
 Dump memory helf-word or Read Hw helf-word register;

DW
 DW <Address, Hex> <Len, Dec>:
 Dump memory word or Read Hw word register;

EB
 EB <Address, Hex> <Value, Hex>:
 Write memory byte or Write Hw byte register
 Supports multiple byte writting by a single command
 Ex: EB Address Value0 Value1

EW
 EW <Address, Hex> <Value, Hex>:
 Write memory word or Write Hw word register
 Supports multiple word writting by a single command
 Ex: EW Address Value0 Value1

WDTRST
 WDTRST:
 To trigger a reset by WDT timeout

Thanks for the feature!

Now I have the ROM
and can do some more
reverse engineering.

The flash is not
mapped though so lets
get code execution and
map/dump it.

So much for "secure" boot

Now I have all the keys used in
decryption of flash header (even
though flash is internal on this part)
and for HMAC SHA authentication.
They should have used asymmetric
schemes and locked out access to
keys after use, or before entering a
debug menu that shouldn't exist.

So much for "secure" boot

Code execution from debug menu

After reverse engineering the ROM... I find the command handler
for the debug menu. It is setup so that a variable in SRAM points
to an area in ROM that has pointers to the command string, help
menu string, and a function pointer to an implementation. I cloned
this structure into another region of unused SRAM and added my
own command named "golden." I also have python scripts quickly
made up to instrument the ROM debug menu for my purposes.

Notes:

0x1002f050 command array pointer

0x1002dd08 flash_already_init

0x20000000 32kb free sram

0x318d0 command array in the rom
length is 84 + the 4 zero bytes at the end

structure:

0: str pointer
4: func addr
8: help string

Mapping the flash and dumping it

I first map the flash, then call some function that
verifies the flash and populates a structure with
the pointer to the code entrypoint. We then write
some quicker dumping code that writes the raw
bytes over the UART console. It is a 2MB flash so
this is faster than the read memory commands in
the ROM.

Tuya firmware

Now I have the Tuya firmware and ROM. The firmware is not designed too well, it
seems to support many features not used in the product. It seems to be a portable
firmware that takes in a JSON configuration from Tuya to configure the device?

We could now backdoor the firmware. Since all the keys are known, I can
generate a new HMAC signature for the firmware. There is a debug menu mode
for UART flash download, but I can also write to the flash via ROM commands.

Interesting glitches

This device is quite unstable, by
just playing with the power pin
manually, I can generate
interesting glitches and
subsequence output over the
UART log.

== Rtl8710c IoT Platform ==
Chip VID: 5, Ver: 1
ROM Version: v2.1
[SPIF Err]Invalid ID
[SPIF Err]Invalid ID
[BOOT Err]Flash init error (io_mod=0,
pin_sel=0)
StartUp@0x0: Invalid RAM Img Signature!

Interesting glitches
OM Version: v2.1
Test Mode: boot_cfgc▒▒\x5▒
== Rtl8710c IoT Platform ==
Chip VID: 5, Ver: 1
R▒5▒▒▒▒ͥ▒▒▒▒▒r▒j▒▒
== Boot Loader ==
Dec 5 2019:14:02:18

fwx SELE[ffffffff]
fw SELE Bitidx 0, fw1 valid 1, sn 100,
fw2 valid 1, sn 101
fw1 USE, return sn 100
[MISC Err]Hash Result Incorrect!
Boot Load Err!

This output supports our theory that the
large flat low power region in the side
channel overview capture is the hash
function executing over the whole flash.
As this takes a good bit of time and
would be easier to corrupt/hit in time.

Interesting glitches
Bus Fault:
SCB Configurable Fault Status Reg = 0x00000400

Bus Fault Status:
BusFault Address Reg is invalid(Asyn. BusFault)
Imprecise data bus error:
a data bus error has occurred, but the return address in the stack
frame is not related to the instruction that caused the error.

S-domain exception from Thread mode, Standard Stack frame on S-PSP
Registers Saved to stack

Stacked:
R0 = 0x0002fe57
[..........]
R12 = 0x0000001c
LR = 0x10001eaf
PC = 0x00006114
PSR = 0x61000000

Current:
LR = 0xfffffffd
[..........]
SVC priority: 0x00
PendSVC priority: 0xe0
Systick priority: 0xe0

MSP Data:
1003F9E0: 00000000 E000E014 E000E010 100005EC
1003F9F0: 0000001C 9B01342F 9B012FB8 [..........]
1003FAC0: 04112ED7 FF5428A7 2A42A634 ABF5CAAF
1003FAD0: 564A8902 9576CD37 4461A974 B6ED2E97

PSP Data:
10012BA8: 0002FE57 0000006F ABDCF628 DEADBEEF
10012BB8: 0000001C 10001EAF 00006114 61000000
10012BC8: 0000006F 00000003 00000000
[..........]
10012C88: 10015658 9B03A4C1 00000000 9B01678F
10012C98: 00000004 10015E88 00001000 9B05E363

 == NS Dump ==
CFSR_NS = 0x00000000
[..........]
PSP_NS = 0x00000000
NS HardFault Status Reg = 0x00000000
SCB Configurable Fault Status Reg = 0x00000000

== Back Trace ==

msp=0x1003f9e0 psp=0x10012ba8
Process stack back trace:
top=0x10013ba8 lim=0x10012ba8
00006114 @ sp = 00000000
[..........]
00030131 @ sp = 10012c28
9b05e171 @ sp = 10012c34

Backtrace information may not correct! Use this command to get C source
level in formation:
arm-none-eabi-addr2line -e ELF_file -a -f 00006114 10001eab 0002eaa5
0002fe53 9b 00fef9 9b00fef9 00030131 9b05e171

I guess this chip just loves to be unstable but
keep running. Should be able to glitch it if debug
mode was not enabled with some limited setup...

Ah that is boring...

Let's do something more fun!

● Lets see if we can glitch into the debug menu without messing with pins?
● Or encrypt our own new firmware and bypass the HMAC check?
● Overflow UART receive message length to get buffer overflow in firmware?

Many things are possible at this point. The device ROM was actually designed
such that it uses an external SPI flash for non-RTL8720CF part numbers… so a
correlation power analysis attack (CPA) would be fun to grab the header key then
break secure boot because they use an HMAC SHA for authenticity.

Back to the WiFi/Bluetooth communication

Now that I have the firmware to the Tuya module. I can reverse engineer communication with the
backend/cloud, I have the TLS pre-shared key. I can decipher the structures of data on LAN, and
send the device my own messages. It is all a matter of time at this point.

Keys are fun! I could have gotten some from the App, but this is better! There may be some
provisioned ephemeral keys, but they are not per-session. It would be setup when the device is
linked to the Tuya account/app.

Cipher Suites (4 suites)
 Cipher Suite: TLS_PSK_WITH_AES_256_CBC_SHA (0x008d)
 Cipher Suite: TLS_PSK_WITH_AES_128_CBC_SHA256 (0x00ae)
 Cipher Suite: TLS_PSK_WITH_AES_128_CBC_SHA (0x008c)
 Cipher Suite: TLS_EMPTY_RENEGOTIATION_INFO_SCSV (0x00ff)

Questions?

